Lipid accumulation in dysferlin-deficient muscles.

نویسندگان

  • Miranda D Grounds
  • Jessica R Terrill
  • Hannah G Radley-Crabb
  • Terry Robertson
  • John Papadimitriou
  • Simone Spuler
  • Tea Shavlakadze
چکیده

Dysferlin is a membrane associated protein involved in vesicle trafficking and fusion. Defects in dysferlin result in limb-girdle muscular dystrophy type 2B and Miyoshi myopathy in humans and myopathy in A/J(dys-/-) and BLAJ mice, but the pathomechanism of the myopathy is not understood. Oil Red O staining showed many lipid droplets within the psoas and quadriceps muscles of dysferlin-deficient A/J(dys-/-) mice aged 8 and 12 months, and lipid droplets were also conspicuous within human myofibers from patients with dysferlinopathy (but not other myopathies). Electron microscopy of 8-month-old A/J(dys-/-) psoas muscles confirmed lipid droplets within myofibers and showed disturbed architecture of myofibers. In addition, the presence of many adipocytes was confirmed, and a possible role for dysferlin in adipocytes is suggested. Increased expression of mRNA for a gene involved in early lipogenesis, CCAAT/enhancer binding protein-δ, in 3-month-old A/J(dys-/-) quadriceps (before marked histopathology is evident), indicates early induction of lipogenesis/adipogenesis within dysferlin-deficient muscles. Similar results were seen for dysferlin-deficient BLAJ mice. These novel observations of conspicuous intermyofibrillar lipid and progressive adipocyte replacement in dysferlin-deficient muscles present a new focus for investigating the mechanisms that result in the progressive decline of muscle function in dysferlinopathies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hip region muscular dystrophy and emergence of motor deficits in dysferlin‐deficient Bla/J mice

The identification of a dysferlin-deficient animal model that accurately displays both the physiological and behavior aspects of human dysferlinopathy is critical for the evaluation of potential therapeutics. Disease progression in dysferlin-deficient mice is relatively mild, compared to the debilitating human disease which manifests in impairment of particular motor functions. Since there are ...

متن کامل

Equal Force Recovery in Dysferlin-Deficient and Wild-Type Muscles Following Saponin Exposure

Dysferlin plays an important role in repairing membrane damage elicited by laser irradiation, and dysferlin deficiency causes muscular dystrophy and associated cardiomyopathy. Proteins such as perforin, complement component C9, and bacteria-derived cytolysins, as well as the natural detergent saponin, can form large pores on the cell membrane via complexation with cholesterol. However, it is no...

متن کامل

Increased susceptibility to complement attack due to down-regulation of decay-accelerating factor/CD55 in dysferlin-deficient muscular dystrophy.

Dysferlin is expressed in skeletal and cardiac muscles. However, dysferlin deficiency results in skeletal muscle weakness, but spares the heart. We compared intraindividual mRNA expression profiles of cardiac and skeletal muscle in dysferlin-deficient SJL/J mice and found down-regulation of the complement inhibitor, decay-accelerating factor/CD55, in skeletal muscle only. This finding was confi...

متن کامل

AAV.Dysferlin Overlap Vectors Restore Function in Dysferlinopathy Animal Models

OBJECTIVE Dysferlinopathies are a family of untreatable muscle disorders caused by mutations in the dysferlin gene. Lack of dysferlin protein results in progressive dystrophy with chronic muscle fiber loss, inflammation, fat replacement, and fibrosis; leading to deteriorating muscle weakness. The objective of this work is to demonstrate efficient and safe restoration of dysferlin expression fol...

متن کامل

Expression of myoferlin in skeletal muscles of patients with dysferlinopathy.

Myoferlin is a novel protein of unknown function with high homology to dysferlin, the gene mutations of which cause limb girdle muscular dystrophy type 2B and Miyoshi myopathy. The myoferlin gene seems to be a candidate for the modifier, and because of the high homology to dysferlin myoferlin may work as a compensator for the absence of dysferlin in dysferlinopathy. This hypothesis is based on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of pathology

دوره 184 6  شماره 

صفحات  -

تاریخ انتشار 2014